Measuring site-specific cluster-surface bond formation.
نویسندگان
چکیده
Recent advances in dynamic force microscopy show that it is possible to measure the forces between atomically sharp tips and particular atomic positions on surfaces as a function of distance. However, on most ionic surfaces, the positive and negative ions can so far not be distinguished. In this paper, we use the CaF2(111) surface, where atomic resolution force microscopy has allowed identification of the positions of the Ca2+ and F- ions in the obtained images, to demonstrate that short-range interaction forces can be measured selectively above chemically identified surface sites. Combining experimental and theoretical results allows a quantification of the strength and distance dependence of the interaction of a tip-terminating cluster with particular surface ions and reveals details of cluster and surface relaxation. Further development of this approach will provide new insight into mechanisms of chemical bond formation between clusters, cluster deposition at surfaces, processes in adhesion and tribology, and single atom manipulation with the force microscope.
منابع مشابه
Methanol conversion to hydrocarbons over zeolite catalysts: comments on the reaction mechanism for the formation of the first carbon–carbon bond
The reaction mechanism for the conversion of methanol to hydrocarbons using zeolite catalysts is discussed. In particular, the mechanism of the formation of the initial carbon–carbon bond is considered in terms of the reaction of a surface ylide intermediate with adsorbed methanol. It is suggested that the formation of the initial carbon–carbon bond involves the interaction of the surface-bound...
متن کاملChemisorption of Organics on Platinum. 2. Chemisorption of C2Hx and CHx on Pt(111)
Using the interstitial electron surface model (IESM) developed in the accompanying part, we examined the structures and energetics of a number of organic fragments on Pt surfaces. Using nonlocal density functional methods (B3LYP) we find that organics covalently bond to the Pt(111) surface with localized σ bonds to the surface Pt atoms, leading to tetrahedral hybridization of each carbon bonded...
متن کاملSpontaneous Isopeptide Bond Formation as a Powerful Tool for Engineering Site-Specific Antibody-Drug Conjugates
Spontaneous isopeptide bond formation, a stabilizing posttranslational modification that can be found in gram-positive bacterial cell surface proteins, has previously been used to develop a peptide-peptide ligation technology that enables the polymerization of tagged-proteins catalyzed by SpyLigase. Here we adapted this technology to establish a novel modular antibody labeling approach which is...
متن کاملThe sites for fatty acylation, phosphorylation and intermolecular disulphide bond formation of influenza C virus CM2 protein.
The sites for fatty acylation, disulphide bond formation and phosphorylation of influenza C virus CM2 were investigated by site-specific mutagenesis. Cysteine 65 in the cytoplasmic tail was identified as the site for palmitoylation. Removal of one or more of three cysteine residues in the ectodomain showed that all of cysteines 1, 6 and 20 can participate in the formation of disulphide-linked d...
متن کاملCatalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin.
Protein ubiquitination is catalyzed by ubiquitin-conjugating enzymes (E2s) in collaboration with ubiquitin-protein ligases (E3s). This process depends on nucleophilic attack by a substrate lysine on a thioester bond linking the C terminus of ubiquitin to a cysteine in the E2 active site. Different E2 family members display specificity for lysines in distinct contexts. We addressed the mechanist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 50 شماره
صفحات -
تاریخ انتشار 2005